Berechnung der Parameter von diskreten Hidden-Markov-Modellen mit gradientenprojektionsmethoden. Anwendung auf die automatische Spracherkennung - Calcul des paramètres des modèles de Markov-Hidden par les méthodes de gradient projeté. Application à la reconnaissance automatique de la parole - Computing the parameters of Hidden-Markov models with projected gradient methods. Application to automatic speech recognition
Glasser, L.
Siemens Forschungs- und Entwicklungsberichte 16(4): 147-151
1987
ISSN/ISBN: 0370-9736 Document Number: 407677
Document emailed within 1 workday
Related Documents
Rose, R.C.; Juang, B.H. 1996: Hidden Markov models for speech and signal recognition Electroencephalography and Clinical Neurophysiology. Suppl 45: 137-152Shmatkov, A.M. 2000: Study of local correlations in bacterial genes for use in frames of hidden Markov models Molekuliarnaia Biologiia 34(5): 868-874
Madera, M. 2008: Profile Comparer: a program for scoring and aligning profile hidden Markov models Bioinformatics 24(22): 2630-2631
Kawamoto, R.; Nazir, A.; Kameyama, A.; Ichinomiya, T.; Yamamoto, K.; Tamura, S.; Yamamoto, M.; Hayamizu, S.; Kinosada, Y. 2013: Hidden Markov model for analyzing time-series health checkup data Studies in Health Technology and Informatics 192: 491-495
Werner, U.J. 1991: Zur stochastischen Modellierung des thermischen Verhaltens eines Warmwasserspeichers mittels MARKOV'sher Ketten - The stochastic modelling of the thermal behaviour of a storage tank for hot water using MARKOV chains Wissenschaftliche Zeitschrift der Hochschule für Architektur und Bauwesen Weimar. Ausgabe B 37(4): 183-186
Leufkens, H.G.M. 2002: Pharmacoepidemiological modelling: Markov models of antibiotic use in patients with diabetes Netherlands Journal of Medicine 60(7 Suppl): 78-80; Discussion: 80-82
Browne, W.J.; Steele, F.; Golalizadeh, M.; Green, M.J. 2009: The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models Journal of the Royal Statistical Society. Series A 172(3): 579-598
Leisegang, R.; Maartens, G.; Hislop, M.; Regensberg, L.; Cleary, S. 2010: Improving the evidence base of Markov models used to estimate the costs of scaling up antiretroviral programmes in resource-limited settings Bmc Health Services Research 10 Suppl. 1: S3
Bevan, G.; De Poli, C.; Keng, M.J.; Raine, R. 2020: How valid are projections of the future prevalence of diabetes? Rapid reviews of prevalence-based and Markov chain models and comparisons of different models' projections for England Bmj Open 10(3): E033483
Sims, R.T.; Knollmeyer, H.H. 1970: Markov chains and cell memories Journal of Anatomy 107(Part 1): 191-192
Komenda, S.; Hrbek, J.; Navrátil, J.; Medek, A.; Macáková, J.; Siroká, A. 1974: Markov chain as a model of verbal learning Activitas Nervosa Superior 16(3): 216
Wu, Q.; Wang, R.; Li, H.; Juergen, P.; He, Y.; Wang, B. 2006: Statistical properties of Markov chain in land use and landscape study Ying Yong Sheng Tai Xue Bao 17(3): 434-437
Shibata, T.; Tanaka, H.; Tsujimoto, Y.; Yoshimura, K.; Fukutomi, T.; Nanasawa, T.; Yamaguchi, N. 2001: A new prognosis factor analysis based on nonhomogeneous Markov description Studies in Health Technology and Informatics 84(Part 1): 543-546
Biswas, S.; Pachal, T.K. 1987: A multistate Markov chain model for evaluating a sterilization policy Biometrical Journal. Biometrische Zeitschrift 29(1): 57-64
Urakabe, S.; Orita, Y.; Ando, A.; Hirano, S.; Fujiwara, Y. 1976: Kidney function tests and prognosis--applicatin of Markov chains Nihon Rinsho. Japanese Journal of Clinical Medicine 34(9): 2864-2869
Chola, L.; Fadnes, L.T.; Engebretsen, I.M.S.; Tumwine, J.K.; Tylleskar, T.; Robberstad, B.; Tylleskär, T.; Van de Perre, P.; Ekström, E.-C.; Meda, N.; Tumwine, J.K.; Kankasa, C.; Jackson, D.; Tylleskär, T.; Engebretsen, I.M.S.; Fadnes, L.T.; Fjeld, E.; Fylkesnes, K.; Klungsøyr, J.ør.; Nordrehaug-Astrøm, A.; Olsen, Øy.E.; Robberstad, B.; Sommerfelt, H.; Van de Perre, P.; Ekström, E.-C.; Nor, B.; Meda, N.; Diallo, A.H.; Ouedrago, T.; Rouamba, J.; Traoré, B.; Traoré, G.; Zabsonré, E.; Tumwine, J.K.; Bwengye, C.; Karamagi, C.; Nankabirwa, V.; Nankunda, J.; Ndeezi, G.; Wandera, M.; Kankasa, C.; Katepa-Bwalya, M.; Chola, L.; Siuluta, C.; Siziya, S.; Jackson, D.; Lombard, C.; Chopra, M.; Colvin, M.; Doherty, T.; Googa, A.E.; Matizirofa, 2013: Infant feeding survival and Markov transition probabilities among children under age 6 months in Uganda American Journal of Epidemiology 177(5): 453-462
Wang, N.; Zhang, Z.-J.; Chang, D. 2012: Using markov model to cost-effectiveness analysis of traditional Chinese medicine interference Zhongguo Zhong Yao Za Zhi 37(18): 2698-2701
Papatheofanis, F.J. 2000: Utility evaluations for Markov states of lung cancer for PET-based disease management Quarterly Journal of Nuclear Medicine: Official Publication of the Italian Association of Nuclear Medicine and the International Association of Radiopharmacology 44(2): 186-190
Urakabe, S.; Orita, Y.; Shirai, D.; Fukuhara, Y.; Ando, A. 1975: Prognosis of chronic glomerulonephritis in adult patients estimated on the basis of the Markov process Clinical Nephrology 3(2): 48-53
Grimm, J.; Hempel, W.E.; Gerst, H.; Richter, K.; Hempel, B. 1988: Assessment of prognosis with Markov chains in chronic cardiovascular diseases in relation to various therapies Zeitschrift für die Gesamte Innere Medizin und ihre Grenzgebiete 43(8): 205-209