Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
Dimitrakopoulos, S.
Economics Letters 150: 10-14
2017
ISSN/ISBN: 0165-1765 Document Number: 418733
Document emailed within 1 workday
Related Documents
Lin, L-An.; Luo, S.; Davis, B.R. 2018: Bayesian regression model for recurrent event data with event-varying covariate effects and event effect Journal of Applied Statistics 45(7): 1260-1276Honoré, B.E.; Kesina, M. 2017: Estimation of Some Nonlinear Panel Data Models with Both Time-Varying and Time-Invariant Explanatory Variables Journal of Business-Economic Statistics 35(4): 543-558
Singh, R.; Tripathi, V.; Singh, K.; Ahuja, R.K.; Vani, M.K.; Dwivedi, S.N. 2012: Breastfeeding as a time-varying-time-dependent factor for birth spacing: multivariate models with validations and predictions World Health and Population 13(3): 28-51
Macnab, Y.C. 2009: Bayesian multivariate disease mapping and ecological regression with errors in covariates: Bayesian estimation of DALYs and 'preventable' DALYs Statistics in Medicine 28(9): 1369-1385
Berg, A.O. 1981: Case-control diagnosis and Bayesian inference in common viral infections Journal of Family Practice 12(6): 1017-1021
Iwai, S.; Kawazoe, Y.; Imai, T.; Ohe, K. 2017: Effects of Implementing a Tree Model of Diagnosis into a Bayesian Diagnostic Inference System Studies in Health Technology and Informatics 245: 882-886
Ronin-Walknowska, E.; Drelichowski, L.; Kornacki, Z. 1977: Use of multiform regression models in perinatal diagnosis as a standard of partial (off line) data processing system. II. Interpretation of results and the use of multiform regression models Ginekologia Polska 48(3): 259-264
Goerdten, J.; Carrière, I.; Muniz-Terrera, G. 2020: Comparison of Cox proportional hazards regression and generalized Cox regression models applied in dementia risk prediction Alzheimer's and Dementia 6(1): E12041
Gayawan, E.; Adebayo, S.B.; Chitekwe, S. 2014: Exclusive breastfeeding practice in Nigeria: a bayesian stepwise regression analysis Maternal and Child Health Journal 18(9): 2148-2157
Assaf, A.G.; Tsionas, M.; Tasiopoulos, A. 2019: Diagnosing and correcting the effects of multicollinearity: Bayesian implications of ridge regression Tourism Management 71: 1-8
Tiwari, V.K.; Dwivedi, S.N. 1994: On some stochastic models of open birth interval SANKHYA. Series B 56(1): 26-38
Mode, C.J. 1975: Perspectives in stochastic models of human reproduction: a review and analysis Theoretical Population Biology 8(3): 247-291
Mauskopf, J.; Wallace, T.D. 1984: Fertility and replacement: some alternative stochastic models and results for Brazil Demography 21(4): 519-536
Yan, S.; Ding, J.; Liu, Y. 2017: Statistical inference methods and applications of outcome-dependent sampling designs under generalized linear models Science China Mathematics 60(7): 1219-1238
Yet, B.; Perkins, Z.; Tai, N.; Marsh, W. 2014: Explicit evidence for prognostic Bayesian network models Studies in Health Technology and Informatics 205: 53-57
Sabot, C.; Debord, J.; Roullet, B.; Marquet, P.; Merle, L.; Lachatre, G. 1995: Comparison of 2- and 3-compartment models for the Bayesian estimation of methotrexate pharmacokinetics International Journal of Clinical Pharmacology and Therapeutics 33(3): 164-169
Asparouhov, T.; Muthén, B. 2020: Advances in Bayesian Model Fit Evaluation for Structural Equation Models Structural Equation Modeling: A Multidisciplinary Journal 28(1): 1-14
Enke, W. 1984: Ein adaptives Regressionsmodell-lernende, lineare, multiple Regression - Modèle adaptatif de régression ― une régression avec apprentissage, linéaire, multiple - An adaptive regression model ― learning, linear, multiple regression Zeitschrift für Meteorologie 34(2): 66-74
Enke, W. 1984: Ein adaptives Regressionsmodell-lernende, lineare, multiple Regression - Modèle adaptatif de régression ― une régression avec apprentissage, linéaire, multiple - An adaptive regression model ― learning, linear, multiple regression Zeitschrift für Meteorologie 34(2): 66-74
Alkema, L.; Ann, W.L. 2011: Estimating the under-five mortality rate using a bayesian hierarchical time series model PLOS one 6(9): E23954