Ein adaptives Regressionsmodell-lernende, lineare, multiple Regression - Modèle adaptatif de régression ― une régression avec apprentissage, linéaire, multiple - An adaptive regression model ― learning, linear, multiple regression
Enke, W.
Zeitschrift für Meteorologie 34(2): 66-74
1984
ISSN/ISBN: 0084-5361 Document Number: 198838
Document emailed within 1 workday
Related Documents
Enke, W. 1984: Ein adaptives Regressionsmodell-lernende, lineare, multiple Regression - Modèle adaptatif de régression ― une régression avec apprentissage, linéaire, multiple - An adaptive regression model ― learning, linear, multiple regression Zeitschrift für Meteorologie 34(2): 66-74Ángel M.Felicísimo,Aurora Cuartero,Juan Remondo,Elia Quirós 2013: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods a comparative study Landslides (Springer) 10(2): 175-189
Salas-Wadge, M.H. 1994: Use of linear multiple regression analysis on dental survey data Community Dental Health 11(4): 197-201
Goerdten, J.; Carrière, I.; Muniz-Terrera, G. 2020: Comparison of Cox proportional hazards regression and generalized Cox regression models applied in dementia risk prediction Alzheimer's and Dementia 6(1): E12041
Just, H.; Holubarsch, C.; Kasper, W.; Wollschläger, H.; Friedburg, M. 1985: Regression of heart hypertrophy. Criteria of regression from the viewpoint of the clinician Zeitschrift für Kardiologie 74 Suppl. 7: 127-134
Guo, H.-M.; Shyu, Y.-I.L.; Chang, H.-K. 2006: Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set Studies in Health Technology and Informatics 122: 891
Yamagami, S.; Suzuki, Y.; Ohya, T.; Murao, M.; Miyata, K.; Tsuru, T. 1994: Statistic evaluation of prognostic risk factors in penetrating keratoplasty using Cox multiple regression model Nippon Ganka Gakkai Zasshi 98(8): 777-781
Caselli, M.; Mangone, A.; Paolillo, P.; Traini, A. 2002: Determination of the acid dissociation constant of bromocresol green and cresol red in water/AOT/isooctane reverse micelles by multiple linear regression and extended principal component analysis Annali di Chimica 92(5-6): 501-512
Okada, T.; Hara, H.; Shimojima, H.; Suzuki, H. 2004: Spontaneous regression of multiple tumoral calcinosis in a child European Journal of Dermatology: Ejd 14(6): 424-425
North, R.J.; Awwad, M. 1987: T cell suppression as an obstacle to immunologically-mediated tumor regression: elimination of suppression results in regression Progress in Clinical and Biological Research 244: 345-358
Shaw, T.R.; Fananapazir, L.; McCormack, R.J.; Kitchin, A.H. 1980: Regression of multiple pulmonary varices after mitral valve replacement Journal of Thoracic and Cardiovascular Surgery 79(1): 117-120
Nagornyi, P.A. 1971: Evaluation of combined effect of some factors by the method of multiple regression Farmakologiia i Toksikologiia 34(3): 366-369
Zschoch, H.; Klemm, P.G. 1975: The evaluation of organ weights by means of multiple regression equations Zentralblatt für Allgemeine Pathologie U. Pathologische Anatomie 119(3): 213-220
Dominguez-Rojas, V.; Astasio-Arbiza, P.; Ortega-Molina, P.; Gordillo-Florencio, E.; Garcia-Nuñez, J.A.; Bascones-Martinez, A. 1993: Analysis of several risks factors involved in dental caries through multiple logistic regression International Dental Journal 43(2): 149-156
Grover, I.S.; Kaur, R. 1985: Regression of rifampicin and 7-azatryptophan induced multiple heterocysts by viper venom in Anabaena ARM 314 Indian Journal of Experimental Biology 23(3): 151-153
Johnson, C.A.; Liese, B.S.; Hassanein, R.E. 1989: Factors predictive of heightened third-day bilirubin levels: a multiple stepwise regression analysis Family Medicine 21(4): 283-287
Mishina, M.; Saito, Y.; Onozato, T.; Saito, K.; Chiyotani, K.; Nakamura, M.; Sasaki, T.; Okubo, T.; Takishima, T. 1982: Multiple regression analysis of the relationship between the respiratory function and roentgenographic finding in silicosis Nihon Kyobu Shikkan Gakkai Zasshi 20(3): 323-329
Bellet, C.R.; Etter, J.C.; Testa, B. 1978: The description of rheological curves by a simple empirical function and its calculation by multiple regression Pharmaceutica Acta Helvetiae 53(7): 211-216
Passing, H.; Bablok, W. 1984: Comparison of several regression procedures for method comparison studies and determination of sample sizes. Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part II Journal of Clinical Chemistry and Clinical Biochemistry 22(6): 431-445
Walker, P.M.; Johnston, K.W. 1980: Predicting the success of a sympathectomy: a prospective study using discriminant function and multiple regression analysis Surgery 87(2): 216-221