Characterization of soluble cyclic adenosine monophosphate-dependent protein kinase isozymes in murine embryonic palatal tissue

Greene, R.M.; Linask, K.K.; Pisano, M.M.; Lloyd, M.R.

Journal of Craniofacial Genetics and Developmental Biology 9(2): 207-222

1989


ISSN/ISBN: 0270-4145
PMID: 2794008
Document Number: 339171
Certain hormonal primary messengers identified in the mammalian palate during its ontogeny transmit information to the interior of the cell via transmembrane signaling systems that control the production of the secondary messenger cyclic adenosine monophosphate. The singular role of intracellular cyclic AMP is to activate cAMP-dependent protein kinases (cAMP-dPK). cAMP-dPK were thus identified and characterized in the developing murine embryonic palate. Incubation of cytosolic fractions of embryonic palatal tissue with cAMP resulted in a dose-dependent increase in the cAMP-dPK activity ratio. A transient elevation of basal cAMP-dPK was seen during the period of palatal ontogeny that corresponded temporally with a previously demonstrated transient elevation of palatal basal cAMP levels. Fractions of embryonic palatal tissue cytosols derived by diethylaminoethyl (DEAE)-Sephacel chromatography were analyzed for phosphotransferase activity and for [3H]-cAMP binding to the regulatory (R) subunits of cAMP-dPK. Such analyses revealed two peaks of activity on day 13 of gestation. Based on the salt concentration at which the material in these peaks eluted from DEAE, its ability to cochromatograph with authentic cAMP-dPK isozymes, its molecular weight as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis, and the ability of the material to be photoaffinity labeled with [3H]-8-azidoadenosine 3',5' cyclic phosphate, types I and II cAMP-dPK were identified. Regulatory subunits of cAMP-dPK were characterized by the binding of [3H]-cAMP to cytosolic fractions of embryonic palatal tissue. Such binding was saturable (Bmax = 1,096 fmol/mg protein) and of high affinity (Kd = 7 nM). Only cAMP and cyclic guanosine monophosphate competed in a dose-related manner with [3H]-cAMP for binding to R subunits of cAMP-dPK. Adenosine, cTMP, and adenosine triphosphate, at doses up to 10(-4) M, did not compete for binding. Temporal analysis of binding data indicated that the number of binding sites transiently decreased during day 13 of gestation. Characterization of cAMP-dPK in tissue derived from the developing mammalian palate allows consideration of cAMP-dPK as a key regulatory enzyme capable of transducing hormonally elevated intracellular levels of cAMP into metabolic responses during orofacial ontogenesis.

Document emailed within 1 workday
Secure & encrypted payments