Solubility behavior of four diastereomeric salts and two amino acids in near-critical CO2

Gao, L.-h.; Liu, H.-l.; Chai, S.-h.; Cai, Y.-f.; Liu, L.-l.; Wu, Y.-t.

Yao Xue Xue Bao 37(5): 355-358

2002


ISSN/ISBN: 0513-4870
PMID: 12579840
Document Number: 550195
To establish a suitable condition for extraction of phenylalanine (Phe), 5-hydroxytryptophan (5-OH-Trp) and four diastereomeric salts, (1R,2S)-ephedrine- (2S,3S)-tartaric acid, (1R,2S)-ephedrine-(2R,3R)-tartaric acid, (1S,2S)-pseudoephedrine-(2S,3S)-tartaric acid, (1S,2S)-pseudoephedrine- (2R,3R)-tartaric acid in supercritical fluid extraction and to assess the solubilities of Phe, 5-OH-Trp and the four diastereomeric salts in CO2. Single-pass method and HPCE. The solubilities of Phe, 5-OH-Trp and the four diastereomeric salts in CO2 were determined over temperature and pressure ranges of 25-50 degrees C and 6.32-34.03 MPa respectively. The experimental results showed that the solubilities of Phe, 5-OH-Trp and the four diastereomeric salts do not increase with density of CO2. There existed a maximum in the critical region of CO2. The dramatically high solubilities in the pressure of 6.32-7.78 MPa show a critical behavior, which can be explained by critical characteristic through thermodynamics analysis. The results suggest that the separation of Phe, 5-OH-Trp and the four diastereomeric salts is more efficient in critical region of CO2.

Document emailed within 1 workday
Secure & encrypted payments