A review of the current scientific and regulatory status of nanomedicines and the challenges ahead
Hock, S.C.; Ying, Y.M.; Wah, C.L.
PDA Journal of Pharmaceutical Science and Technology 65(2): 177-195
2011
ISSN/ISBN: 1948-2124 PMID: 21502077 Document Number: 655932
Nanomedicines refer to drugs, medical devices, and health products developed using nanotechnology with the aim of diagnosing, monitoring, and treating diseases at the molecular level. Due to their nano size, nanomedicines offer advantages over conventional medicines, including more effective targeting of difficult-to-reach sites, improved solubility and bioavailability, and reduced adverse effects. Hence, nanomedicines can be used to achieve the same therapeutic effect at smaller doses than their conventional counterparts. Three types of nanomedicines are described: nanocarriers used in drug delivery, nanosuspensions used in the improvement of drug solubility, and nanoparticles used in bioimaging. While nanomedicines offer promising benefits, there are concerns that the inherent properties of nanoparticles such as their size, shape, agglomeration/aggregation potential, and surface chemistry can adversely affect the safety and quality of nanomedicines. Furthermore, there are currently no regulatory guidelines developed specifically for nanomedicines due to limitations including inadequate knowledge regarding nanoparticle behavior, the absence of standardized nomenclature, test methods, and characterization of nanoparticles, as well as difficulty in determining primary jurisdiction for combination products. In addition, a shortage of trained personnel, a lack of a nanomedicine-specific safety protocol, and ineffective control of nanoparticle contamination challenge the current good manufacturing practice requirements governing the manufacture of nanomedicines. Regulatory authorities are in the midst of improving the current framework for controlling the manufacturing processes, product quality, and safety of nanomedicines. This paper proposes improvements through the adaptation of conventional regulations for nanoparticles, implementation of compulsory regulations for presently unregulated nanoparticle-containing products, and the establishment of an online database for efficient retrieval of information relating to nanomedicines by authorities. Nanomedicines refer to drugs, medical devices, and health products developed using nanotechnology with the aim of diagnosing, monitoring, and treating diseases at the molecular level. Due to their nano size, nanomedicines offer advantages over conventional medicines, including more effective targeting of difficult-to-reach sites, improved solubility and bioavailability, and better side effect profile. Hence, smaller doses of nanomedicines are needed to achieve the same therapeutic effect. While nanomedicines offer promising benefits, there are concerns that the inherent properties of nanoparticles such as their size, shape, agglomeration/aggregation potential, and surface chemistry can adversely affect the safety and quality of nanomedicines. Standardized test methods and characterization of nanoparticles are lacking. In addition, a shortage of trained personnel, a lack of a nanomedicines-specific safety protocol, and ineffective control of nanoparticle contamination challenge the current good manufacturing practice requirements governing the manufacture of nanomedicines. Regulatory authorities are in the midst of improving the current framework for controlling the manufacturing processes, product quality, and safety of nanomedicines. This paper proposes improvements through the adaptation of conventional regulations for nanoparticles, implementation of compulsory regulations for presently unregulated nanoparticle-containing products, and establishment of an online database for efficient retrieval of information relating to nanomedicines by authorities.