TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming

Richez, C.; Yasuda, K.; Watkins, A.A.; Akira, S.; Lafyatis, R.; van Seventer, J.M.; Rifkin, I.R.

Journal of Immunology 182(2): 820-828

2009


ISSN/ISBN: 0022-1767
PMID: 19124725
Document Number: 633084
Exacerbation of disease in systemic lupus erythematosus (SLE) is associated with bacterial infection. In conventional dendritic cells (cDCs), the TLR4 ligand bacterial LPS induces IFN-beta gene expression but does not induce IFN-alpha. We hypothesized that when cDCs are primed by cytokines, as may frequently be the case in SLE, LPS would then induce the production of IFN-alpha, a cytokine believed to be important in lupus pathogenesis. In this study we show that mouse cDCs and human monocytes produce abundant IFN-alpha following TLR4 engagement whether the cells have been pretreated either with IFN-beta or with a supernatant from DCs activated by RNA-containing immune complexes from lupus patients. This TLR4-induced IFN-alpha induction is mediated by both an initial TRIF-dependent pathway and a subsequent MyD88-dependent pathway, in contrast to TLR3-induced IFN-alpha production, which is entirely TRIF-dependent. There is also a distinct requirement for IFN regulatory factors (IRFs), with LPS-induced IFN-alpha induction being entirely IRF7- and partially IRF5-dependent, in contrast to LPS-induced IFN-beta gene induction which is known to be IRF3-dependent but largely IRF7-independent. This data demonstrates a novel pathway for IFN-alpha production by cDCs and provides one possible explanation for how bacterial infection might precipitate disease flares in SLE.

Document emailed within 1 workday
Secure & encrypted payments