Insulin-like growth factor 1 (IGF-1) alters drug sensitivity of HBL100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs
Dunn, S.E.; Hardman, R.A.; Kari, F.W.; Barrett, J.C.
Cancer Research 57(13): 2687-2693
1997
ISSN/ISBN: 0008-5472 PMID: 9205078 Document Number: 481526
In this study, we tested the hypothesis that insulin-like growth factor-1 (IGF-1) modulates apoptosis in human breast cancer cells, HBL100, induced by diverse chemotherapeutic drugs. IGF-1 increased cell survival of HBL100 cells treated with 5-fluorouracil (antimetabolite), methotrexate (antimetabolite), tamoxifen (antiestrogen/antiproliferative), or camptothecin (topoisomerase 1 inhibitor) and after serum withdrawal. Elevated cell survival was not due to an increase in cell proliferation by IGF-1, but rather to an inhibition of apoptosis. Evidence for death by apoptosis was supported by cellular morphology and DNA fragmentation. There were no changes observed in Bcl-2 protein or bax mRNA levels. Extracellular matrix (ECM) is known to influence the apoptotic response of cells; therefore, the antiapoptotic effect of IGF-1 on breast cancer cells was examined using different ECMs: laminin, collagen IV, or Matrigel. IGF-1 protected cells from apoptosis induced by methotrexate on all ECMs tested, providing the first evidence that IGF-1 protects against apoptosis in three-dimensional culture systems. These data provide the rationale to search for drugs that lower serum IGF-1 in an effort to improve the efficacy of chemotherapeutic drugs for the treatment of breast cancer.