Inability of human alveolar macrophages to stimulate resting T cells correlates with decreased antigen-specific T cell-macrophage binding

Lyons, C.R.; Ball, E.J.; Toews, G.B.; Weissler, J.C.; Stastny, P.; Lipscomb, M.F.

Journal of Immunology 137(4): 1173-1180

1986


ISSN/ISBN: 0022-1767
PMID: 2426354
Document Number: 270004
Alveolar macrophages (AM) from the majority of human volunteers are defective antigen presenting cells (APC) in T cell proliferation assays despite the display by the cells of HLA-D region antigens. We have confirmed that AM secrete relatively little interleukin 1 (IL 1), but addition of exogenous IL 1 did not improve the capacity of AM to initiate antigen-induced T cell proliferation. Thus, the presence of HLA-D region antigens and IL 1 is not sufficient to enable an accessory cell to act as an APC. We developed a T cell-accessory cell binding assay to investigate early events in T cell activation. AM demonstrated a diminished capacity as compared with monocytes to bind antigen-specific T cell clones. Nevertheless, AM often induced proliferation of T cell clones as effectively as monocytes, indicating that antigen display was intact. The inefficiency of AM in bind T cell clones correlated with their reduced capacity to induce resting T cells to express IL 2 receptors, secrete IL 2, and proliferate in response to antigen. Indirect immunofluorescence established that similar percentages of AM and monocytes expressed LFA molecules, but the density of the molecules was greater on monocytes than AM. A role for LFA antigens in the physical binding of T cells to monocytes was demonstrated by blocking antigen-specific binding with a monoclonal antibody to LFA-1 antigen. LFA-1 antibody also blocked the low levels of specific binding between AM and T cell clones, indicating that LFA-1-ligand interactions were operative between these two cell types. These studies indicate that there are critical cell membrane characteristics that promote binding of T cells to APC in addition to T cell receptor-antigen interactions. This combination of nonspecific and specific interactions leads to avid T cell-APC binding that may be essential for activation of resting T cells. Furthermore, we postulate that the failure to AM to act as effective APC results from an inability to bind T cells efficiently.

Document emailed within 1 workday
Secure & encrypted payments