Influence of intravenous Mg++ solutions on renal excretion of potassium, sodium, calcium, chloride, intraleukocytic potassium and peripheral vascular resistance: a metabolic and hemodynamic study in normal volunteers
Glänzer, K.; Schlebusch, H.; Sorger, M.; Pannenbecker, D.; Krück, F.
Magnesium 3(4-6): 324-338
1984
ISSN/ISBN: 0252-1156 PMID: 6536840 Document Number: 227706
In an open randomized crossover trial 8 healthy male volunteers received an intravenous infusion of potassium chloride, potassium/magnesium chloride, potassium-(D,L)-aspartate, and potassium/magnesium-(D,L)-aspartate. Equimolar amounts of potassium (27.75 mmol) and magnesium (13.9 mmol) were given in a 500-ml volume during 24 h. During two 9-day periods subjects were maintained on a constant diet with a daily intake of 80 mmol potassium and 60 mmol magnesium. Infusions were administered on day 5 and 7 of each period. Serum and urine electrolyte concentrations as well as intraleukocyte potassium were measured before, during, and after the tests; cardiac output and systemic vascular resistance were determined by impedance cardiography. Potassium and magnesium containing solutions did not influence renal elimination of potassium, and also the circadian rhythm of potassium excretion did not show any change. The elimination of sodium, calcium, potassium, and chloride rose significantly over the corresponding control values during magnesium infusions, but not when potassium salts were given. The increase of calcium excretion after Mg++ is most probably due to suppression of parathyroid hormone. Intraleukocyte potassium was not affected significantly by the various infusions, indicating that intracellular compartments are completely filled. There was no evidence that the anion (D,L-aspartate or chloride) had a significant effect on all measured variables. Mean arterial blood pressure and peripheral vascular resistance were not altered significantly during the infusions.